By kirtiagarwal06
// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
// Utility function to find minimum of two elements
int min(int x, int y) { return (x <= y) ? x : y; }
/* Returns index of x if present, else returns -1 */
int fibMonaccianSearch(int arr[], int x, int n)
{
/* Initialize fibonacci numbers */
int fibMMm2 = 0; // (m-2)'th Fibonacci No.
int fibMMm1 = 1; // (m-1)'th Fibonacci No.
int fibM = fibMMm2 + fibMMm1; // m'th Fibonacci
/* fibM is going to store the smallest Fibonacci
Number greater than or equal to n */
while (fibM < n) {
fibMMm2 = fibMMm1;
fibMMm1 = fibM;
fibM = fibMMm2 + fibMMm1;
}
// Marks the eliminated range from front
int offset = -1;
/* while there are elements to be inspected. Note that
we compare arr[fibMm2] with x. When fibM becomes 1,
fibMm2 becomes 0 */
while (fibM > 1) {
// Check if fibMm2 is a valid location
int i = min(offset + fibMMm2, n - 1);
/* If x is greater than the value at index fibMm2,
cut the subarray array from offset to i */
if (arr[i] < x) {
fibM = fibMMm1;
fibMMm1 = fibMMm2;
fibMMm2 = fibM - fibMMm1;
offset = i;
}
/* If x is greater than the value at index fibMm2,
cut the subarray after i+1 */
else if (arr[i] > x) {
fibM = fibMMm2;
fibMMm1 = fibMMm1 - fibMMm2;
fibMMm2 = fibM - fibMMm1;
}
/* element found. return index */
else
return i;
}
/* comparing the last element with x */
if (fibMMm1 && arr[offset + 1] == x)
return offset + 1;
/*element not found. return -1 */
return -1;
}
// Driver Code
int main()
{
int arr[]
= { 10, 22, 35, 40, 45, 50, 80, 82, 85, 90, 100,235};
int n = sizeof(arr) / sizeof(arr[0]);
int x = 235;
int ind = fibMonaccianSearch(arr, x, n);
if(ind>=0)
cout << "Found at index: " << ind;
else
cout << x << " isn't present in the array";
return 0;
}```